

INDIAN SCHOOL AL WADI AL KABIR

Unit Test (2024 - 2025)

Class: XII Date: 30.05.2024 Sub: MATHEMATICS (041) Set-II

Max Marks: 30 Time: 1 hour

General Instructions:

- 1. This question paper is divided in to 4 sections- A, B, C and D.
- 2. Section A comprises of 7 questions of 1 mark each.
- 3. Section B comprises of 3 questions of 2 marks each.
- 4. Section C comprises of 3 questions of 3 marks each.
- 5. Section D comprises of 2 case study-based question.
- 6. Internal choice has been provided.

SECTION - A

The domain of the function $cos^{-1}(2x-3)$? 1.

(1m)

[-1, 1]

B (-1, 2) **C**

[1, 2]

D

[-1, 0]

If $A = \begin{bmatrix} 6 & -2 \\ 1 & 0 \end{bmatrix}$ then $A^{-1} =$ _____.

(1m)

A $\begin{bmatrix} 0 & 2 \\ -1 & 6 \end{bmatrix}$ B $\begin{bmatrix} 0 & 1 \\ -2 & 6 \end{bmatrix}$ C $\begin{bmatrix} 0 & 1 \\ \frac{1}{2} & 3 \end{bmatrix}$ D $\begin{bmatrix} -3 & 1 \\ \frac{1}{2} & 0 \end{bmatrix}$

-10

1

If $A = \begin{bmatrix} a & c & -1 \\ b & 0 & 5 \\ 1 & 5 & 0 \end{bmatrix}$ is a skew symmetric matrix, then the value of 2a - (b + c)

 \mathbf{C}

Α

0

В

1

 \mathbf{C}

D

10

4. If the points A (-2, -5), (3, 5), (2, k) are collinear k is:

(1m)

(1m)

(1m)

A

2

В

0

D

3

The value of the expression $\cos^{-1}(\cos\frac{3\pi}{4}) + \sin^{-1}(\sin\frac{3\pi}{4})$ is:

A

π

В

 $\frac{3\pi}{2}$ C $\frac{7\pi}{4}$

D

π 2

If $A = \begin{bmatrix} 5 & 0 & -1 \\ 0 & 2 & 0 \\ 0 & 10 & -1 \end{bmatrix}$ then |A| + |adjA| =

(1m)

-110

В

90

 \mathbf{C}

-1000

D

-900

- 7. In the following question a statement of assertion (A) is followed by a statement of reason (1m) (R). Choose the correct answer out of the following choices.
 - A) Both A and R are true and R is the correct explanation of A.
 - B) Both A and R are true but R is not the correct explanation of A.
 - C) A is true but R is false.
 - D) A is false but R is true

Assertion (A): Let f be the greatest integer function defined from $R \to R$ such that f(x) = [x], then f is neither one to one nor onto.

Reason (R): A function $f: A \rightarrow B$ is said to be one to one function if range of f = B

SECTION - B

8. Show that a function $f:[0, \infty) \to R$ defined as $f(x) = x^2 + 6x + 1$ is one-one but not (2m) onto.

- OR

Let L be the set of lines and R be the relation defined by

 $R = \{(l_1, l_2): l_1 \text{ is perpendicular to } l_2\}$. Check whether the relation R is symmetric and transitive.

9. If
$$a = \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right) + \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$
 and $b = \tan^{-1}(1) + \sec^{-1}(2)$

then find the value of a + b

10.
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \\ 1 & -5 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 \\ 0 & -1 \\ 3 & 2 \end{bmatrix}$ then find AB

SECTION - C

- 11. Determine whether the relation R on the set real numbers given by $R = \{(a b): a \le b^3, a, b \in R\}$ is reflexive, symmetric or transitive. (3m)
- 12. Using matrices solve the following system of the equations: x + 2y z = 2x 2y + z = 8 (3m)

$$2x - y - z = 7 \qquad -\mathbf{OR} \quad -\mathbf{OR}$$

$$Find A^{-1} if A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & 2 & 1 \end{bmatrix}$$

13. Find X and Y if
$$2X + 3Y = \begin{bmatrix} 3 & -2 \\ 5 & 4 \end{bmatrix}$$
 and $3X + 2Y = \begin{bmatrix} -8 & 2 \\ 0 & 6 \end{bmatrix}$. (3m)

SECTION - D (Case study-based questions)

14. Anil and Binil are required to answer questions based on functions.

Given below are some real valued functions:

a)
$$f(x) = x^3$$
, f: R to R

b)
$$g(x) = \sin x \cdot \cos x$$
, $g: R \text{ to } R$

c)
$$h(x) = x^2$$
, h: Z to N

d)
$$p(x) = 9x^2 + 6x - 1$$
, p: [0, ∞] to R

Where R, Z and N represents set real numbers, integers and naural numbers respectively.

Based on the functions given above, answer the following questions given to them. (1m)

i) Which of the given function(s) is/are bijective?

(1m) (2m)

(1m)

(1m)

(2m)

- ii) What is the minimum and maximum values of g(x)?
- iii) (a) Is p(x) is surjective? If not, modify the co domain so that the function p(x) becomes surjective.

OR

- (b) Prove that $f(x) = \frac{5x+3}{2}$, f: R to R is bijective.
- 15. On her birthday Padma decided to donate some money to children of an orphanage

If there are 8 children less, everyone gets ₹ 10 more. However, if there are 16 children more, everyone gets ₹ 10 less.

Let the number of children in the orphanage home be x and the amount to be donated to each child be \gtrless y.

Based on the above information, answer the following:

- (i) Express the information provided above in system of linear equations
- (ii) Express the system of linear equations obtained in (i) as matrix equation.
- (iii) (a) Find the number of children (x) and the amount to be donated to each child(y).

-OR-

(b) If A and B are symmetric matrices then prove that AB - BA is a skew symmetric matrix.
